Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 15(1)2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2216942

ABSTRACT

Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Humans , Male , Antibodies, Viral/metabolism , Flavivirus/metabolism , Proteins/metabolism , Viral Envelope Proteins/metabolism , Zika Virus/physiology
2.
Front Med (Lausanne) ; 9: 925369, 2022.
Article in English | MEDLINE | ID: covidwho-1952403

ABSTRACT

Two years after COVID-19 came into being, many technologies have been developed to bring highly promising bedside methods to help fight this epidemic disease. However, owing to viral mutation, how far the promise can be realized remains unclear. Patents might act as an additional source of information for informing research and policy and anticipating important future technology developments. A comprehensive study of 3741 COVID-19-related patents (3,543 patent families) worldwide was conducted using the Derwent Innovation database. Descriptive statistics and social network analysis were used in the patent landscape. The number of COVID-19 applications, especially those related to treatment and prevention, continued to rise, accompanied by increases in governmental and academic patent assignees. Although China dominated COVID-19 technologies, this position is worth discussing, especially in terms of the outstanding role of India and the US in the assignee collaboration network as well as the outstanding invention portfolio in Italy. Intellectual property barriers and racist treatment were reduced, as reflected by individual partnerships, transparent commercial licensing and diversified portfolios. Critical technological issues are personalized immunity, traditional Chinese medicine, epidemic prediction, artificial intelligence tools, and nucleic acid detection. Notable challenges include balancing commercial competition and humanitarian interests. The results provide a significant reference for decision-making by researchers, clinicians, policymakers, and investors with an interest in COVID-19 control.

3.
J Med Imaging (Bellingham) ; 8(Suppl 1): 010902-10902, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1467649

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc across the world. It also created a need for the urgent development of efficacious predictive diagnostics, specifically, artificial intelligence (AI) methods applied to medical imaging. This has led to the convergence of experts from multiple disciplines to solve this global pandemic including clinicians, medical physicists, imaging scientists, computer scientists, and informatics experts to bring to bear the best of these fields for solving the challenges of the COVID-19 pandemic. However, such a convergence over a very brief period of time has had unintended consequences and created its own challenges. As part of Medical Imaging Data and Resource Center initiative, we discuss the lessons learned from career transitions across the three involved disciplines (radiology, medical imaging physics, and computer science) and draw recommendations based on these experiences by analyzing the challenges associated with each of the three associated transition types: (1) AI of non-imaging data to AI of medical imaging data, (2) medical imaging clinician to AI of medical imaging, and (3) AI of medical imaging to AI of COVID-19 imaging. The lessons learned from these career transitions and the diffusion of knowledge among them could be accomplished more effectively by recognizing their associated intricacies. These lessons learned in the transitioning to AI in the medical imaging of COVID-19 can inform and enhance future AI applications, making the whole of the transitions more than the sum of each discipline, for confronting an emergency like the COVID-19 pandemic or solving emerging problems in biomedicine.

5.
Nat Commun ; 12(1): 4664, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1338538

ABSTRACT

Excessive inflammatory responses induced upon SARS-CoV-2 infection are associated with severe symptoms of COVID-19. Inflammasomes activated in response to SARS-CoV-2 infection are also associated with COVID-19 severity. Here, we show a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. N protein facilitates maturation of proinflammatory cytokines and induces proinflammatory responses in cultured cells and mice. Mechanistically, N protein interacts directly with NLRP3 protein, promotes the binding of NLRP3 with ASC, and facilitates NLRP3 inflammasome assembly. More importantly, N protein aggravates lung injury, accelerates death in sepsis and acute inflammation mouse models, and promotes IL-1ß and IL-6 activation in mice. Notably, N-induced lung injury and cytokine production are blocked by MCC950 (a specific inhibitor of NLRP3) and Ac-YVAD-cmk (an inhibitor of caspase-1). Therefore, this study reveals a distinct mechanism by which SARS-CoV-2 N protein promotes NLRP3 inflammasome activation and induces excessive inflammatory responses.


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/virology , Cells, Cultured , Cytokines/metabolism , HEK293 Cells , Humans , Inflammasomes/genetics , Lung Injury/genetics , Lung Injury/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphoproteins/metabolism , Protein Binding , SARS-CoV-2/physiology , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL